Bayesian Ultrasound Image Analysis on Graphics
نویسنده
چکیده
In this thesis, we investigate using the new generation of programmable Graphics Processing Units (GPUs) which support floating point computations for statistical restoration of ultrasound images. Deconvolution is a widely used method of recovering an image from degradation caused by blurring, and thus increasing the image quality. We present a modified Bayesian 2D deconvolution method which provides better parameter estimation and improves the speed performance over the previous approach. This method lies within the Joint Maximum A Posteriori (JMAP) framework and involves three steps. First is the Point Spread Function (PSF) estimation, which uses the Homomorphic method; second, reflectance field estimation uses a Conjugate Gradient (CG) optimization algorithm; and third , variance field estimation uses a Markov Chain Monte Carlo (MCMC) sampling algorithm. We implement the 2D method entirely on programmable floating-point graphics hardware, and results are achieved at an interactive rate. In order to avoid readback from GPU to CPU, we adopt a multi-pass rendering method to realize the iterative model. This indicates the possibility of using the GPU as a coprocessor in the ultrasound imaging system, to improve image quality in real time. Due to the special architecture of GPUs, not all models are suitable for mapping onto them. We also discuss which structures and schemes GPUs favor and which they do not. Experimental results are presented on synthetic and real ultrasound images acquired by a typical diagnostic ultrasound machine. We believe our research opens the door for many other image processing methods that are otherwise currently impractical, due to time consuming and complicated computations. This is especially important for medical image processing applications.
منابع مشابه
Bayesian Ultrasound Image Analysis on Graphics Hardware
In this thesis, we investigate using the new generation of programmable Graphics Processing Units (GPUs) which support floating point computations for statistical restoration of ultrasound images. Deconvolution is a widely used method of recovering an image from degradation caused by blurring, and thus increasing the image quality. We present a modified Bayesian 2D deconvolution method which pr...
متن کاملImproving the quality of ultrasound images using Bayesian estimators
Medical ultrasound imaging due to close behavior of cancer tumors to body tissues has a low contrast. This problem with synthetic aperture imaging method has been addressed. Although the synthetic aperture imaging technique solved the low-contrast problem of ultrasound images, to an acceptable limit, but the performance of these methods is not even acceptable when the signal to noise ratio (SNR...
متن کاملDirectional Stroke Width Transform to Separate Text and Graphics in City Maps
One of the complex documents in the real world is city maps. In these kinds of maps, text labels overlap by graphics with having a variety of fonts and styles in different orientations. Usually, text and graphic colour is not predefined due to various map publishers. In most city maps, text and graphic lines form a single connected component. Moreover, the common regions of text and graphic lin...
متن کاملGPU-Based Block-Wise Nonlocal Means Denoising for 3D Ultrasound Images
Speckle suppression plays an important role in improving ultrasound (US) image quality. While lots of algorithms have been proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with 3D US denoising ...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003